

Gerenciamento de Memória Secundária

Dados Armazenados de Maneira Persistente

Engenharia de Computação

Pontifícia Universidade Católica de Campinas

Prof. Dr. Denis M. L. Martins

Disclaimer

Parte do material apresentado a seguir foi adaptado de:

- IT Systems Open Educational Resource, produzido por Jens~Lechtenböger; e
- Open Education Hub Operating Systems

Imagens decorativas (à esquerda dos slides) retiradas de Unsplash

Objetivos

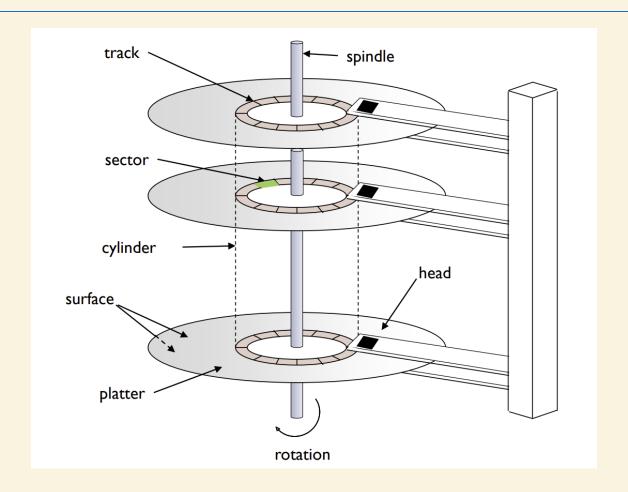
- Descrever a estrutura física dos dispositivos de armazenamento secundário e o efeito da estrutura do dispositivo em seus usos.
- Explicar as características de desempenho dos dispositivos de armazenamento em massa.
- Compreender o funcionamento de algoritmos de escalonamento de disco.

Estrutura de Armazenamento em Massa

- A maior parte do armazenamento secundário para computadores modernos é composta por unidades de disco rígido (HDDs) e dispositivos de memória não volátil (NVM).
- HDDs giram pratos revestidos magneticamente sob cabeçotes de leitura/escrita móveis.
 - As unidades giram a velocidades entre 60 e 250 rotações por segundo.
 - A taxa de transferência é a velocidade com que os dados fluem entre a unidade e o computador.
 - O tempo de posicionamento (tempo de acesso aleatório) é o tempo necessário para mover o braço do disco até o cilindro desejado (tempo de busca) e para que o setor desejado gire sob o cabeçote do disco (latência rotacional).
 - Uma falha no cabeçote de leitura/escrita ocorre quando o cabeçote entra em contato com a superfície do disco – um evento indesejável.
- Os discos podem ser removíveis.

Fita Magnética

Fonte das Imagens: IBM


Por mais de 30 anos, a fita magnética dominou o armazenamento offline e a transferência de dados. Bobinas magnéticas grandes girando em movimentos rápidos e alternados tornaram-se um ícone cultural. Imagens de unidades de fita em movimento foram amplamente utilizadas para representar computadores em filmes e televisão.

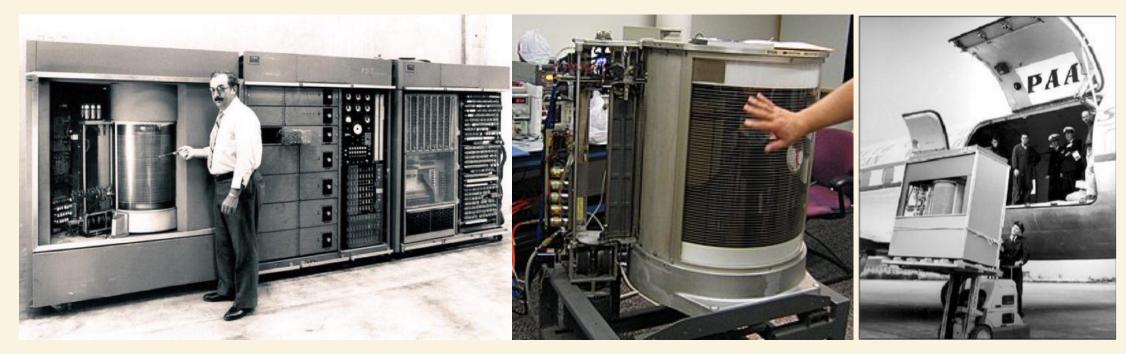
Fita Magnética

- Meio de armazenamento secundário inicial.
 - Evoluiu de bobinas abertas para cartuchos.
 - o Tempo de acesso lento.
 - Acesso aleatório é aproximadamente 1000 vezes mais lento que o acesso a discos.
- Principalmente utilizada para backup, armazenamento de dados de uso infrequente e como meio de transferência entre sistemas.
- Uma vez que os dados estejam sob o cabeçote de leitura/escrita, as taxas de transferência são comparáveis às dos discos (140+ MB/s).
- Capacidade de armazenamento típica varia entre 200 GB e 1,5 TB.

Moving-head Disk Mechanism

Fonte da imagem: Shy @ Verlog.io - Ver também How Hard Drives Work @ Youtube

Hard Disk Drives (HDDs)

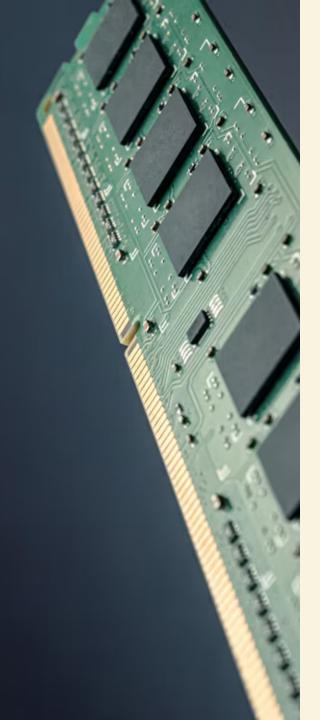

- O diâmetro dos pratos varia de 0.85" a 14" (historicamente).
 - Os tamanhos mais comuns são 3.5", 2.5", e 1.8".
- A capacidade varia de 30 GB a 3 TB por unidade.
- Desempenho:
 - Taxa de Transferência: 6 Gb/s (teórica), 1 Gb/s (real).
 - Tempo de Busca de 3 ms a 12 ms: 9 ms é comum para unidades de desktop.
 - O tempo médio de busca é medido ou calculado com base em 1/3 das trilhas.
 - Latência dependente da velocidade do spindle

Desempenho de Unidades de Disco Rígido (HDDs)

- Tempo médio de acesso = tempo médio de busca + latência média.
 - Para um disco rápido: 3 ms + 2 ms = 5 ms.
 - \circ Para um disco lento: 9 ms + 5,56 ms = 14,56 ms.
- Tempo médio de I/O = tempo médio de acesso + (quantidade a transferir / taxa de transferência)
 + sobrecarga do controlador.
- Exemplo: transferir um bloco de 4 KB em um disco de 7200 RPM com um tempo médio de busca de 5 ms e uma taxa de transferência de 1 Gb/s com uma sobrecarga do controlador de 0,1 ms = 5 ms + 4,17 ms + 0,1 ms + tempo de transferência.
 - Tempo de Transferência = (4 KB / 1 Gb/s) * (8 Gb / GB) * (1 GB / 1024 KB) = 32 / 1024 = 0,031 ms
 - Tempo médio de I/O para bloco de 4 KB = 9,27 ms + 0,031 ms = 9,301 ms

O Primeiro Disco Rígido Comercial

- Em 1956, o computador IBM RAMDAC incluiu o sistema de armazenamento em disco IBM Modelo 350
- Capacidade de 5 milhões (7 bits) de caracteres, com 50 pratos de 50 x 24", e um tempo de acesso < 1s

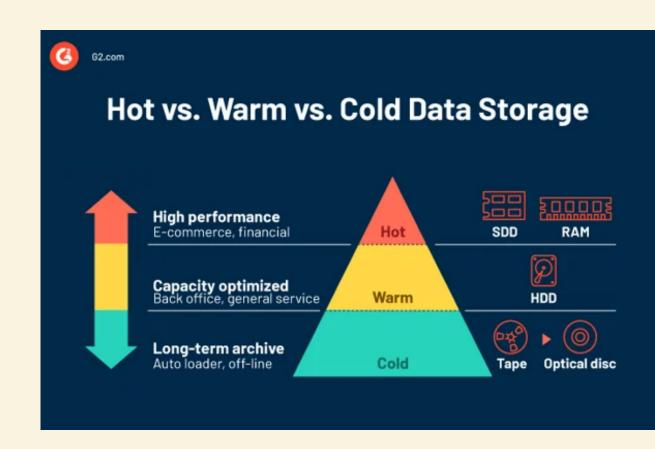


Fonte das imagens: IBM e Wikipedia

Dispositivos de Memória Não Volátil

- Quando semelhantes às unidades de disco rígido: discos de estado sólido (SSDs)
- Outras formas incluem dispositivos USB (pen/flash drives), substitutos de DRAM (memória dinâmica de acesso aleatório) montados na placa-mãe e armazenamento principal em dispositivos como smartphones
- Podem apresentar maior confiabilidade do que HDDs
- Apresentam menor capacidade de armazenamento, mas mais veloz
- São mais caros por MB (megabyte). Podem ter vida útil mais curta
- Ausência de partes móveis elimina o tempo de busca e a latência rotacional

Memória Volátil


- A DRAM (Memória Dinâmica de Acesso Aleatório) é frequentemente utilizada como dispositivo de armazenamento em massa.
 - Tecnicamente não se qualifica como armazenamento secundário devido à sua volatilidade, mas pode apresentar sistemas de arquivos e ser utilizada como um armazenamento secundário extremamente rápido.
- Unidades RAM (conhecidas por diversos nomes, incluindo discos RAM) s\(\tilde{a}\) apresentadas como dispositivos de bloco brutos, geralmente formatados com um sistema de arquivos.

Memória Volátil (cont.)

- Os computadores já possuem buffers e caches implementados em RAM, então qual a razão para RAM drives?
 - Caches/buffers alocados/gerenciados por programadores, sistemas operacionais ou hardware.
 - Unidades RAM estão sob controle do usuário.
 - Encontradas em todos os principais sistemas operacionais: Linux (/dev/ram), macOS
 (diskutil para criação), Linux (/tmp com sistema de arquivos tmpfs).
- Utilizadas como armazenamento temporário de alta velocidade.
 - Programas podem compartilhar grandes volumes de dados rapidamente, através da leitura/ escrita em uma unidade RAM.

Data Tiering

- Quente: para dados estruturados e acessados com muita frequência.
 - Utilizados por funcionários ou clientes
- Morno: para dados estruturados e acessados com frequência moderada.
 - Utilizados para relatórios ou análises
- Frio: para dados estruturados ou não estruturados que são acessados com pouca frequência.
 - Motivos de conformidade legal
- Fonte da imagem: G2
- Leia o paper : Data Tiering in Heterogeneous Memory Systems

Armazenamento nos Videogames

• Final Fantasy VI (1994): O jogo apresenta elementos notáveis, incluindo gráficos de 16 bits de ótima qualidade (que inspira muitos jogos ainda hoje), personagens cativantes e memoráveis que acompanham o jogador por cerca de 40 horas.

• Tamanho: *2,14 MB*.

Fonte: The Gamer

Fonte da Imagem: Flicker

Armazenamento nos Videogames

- Final Fantasy VII (1997): O tamanho do jogo é tão grande que ele se estende por três discos diferentes.
- Tamanho: Cada disco possui cerca de 450 MB, totalizando 1317 MB.
- Fonte: The Gamer.
- Fonte da imagem: Arcade Art Work

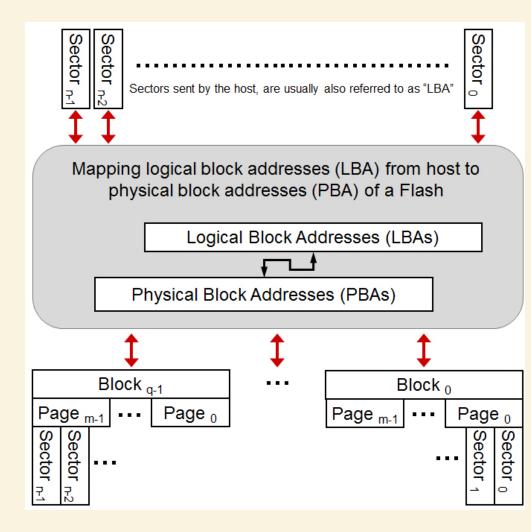
BREAKDOWN OF COMMON RAID LEVELS

Hewlett Packard Enterpise

RAID LEVEL

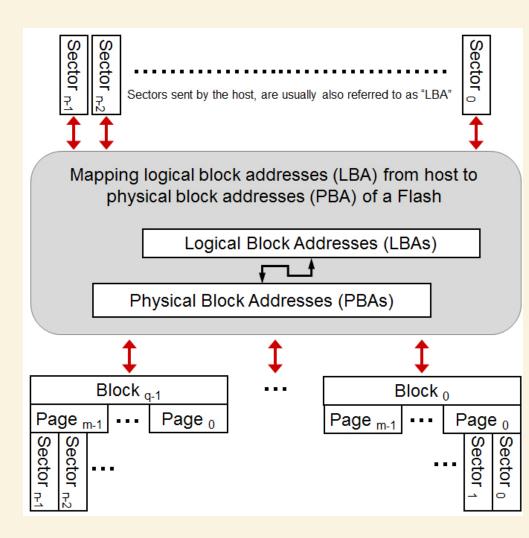
JBOD	SPANNING	2
0	SPANNING	2
1	MIRORING	2
5	STRIPING	3
6	STRIPING & DOUBLE PARITY	4
10	STRIPING & MIRRORING	4

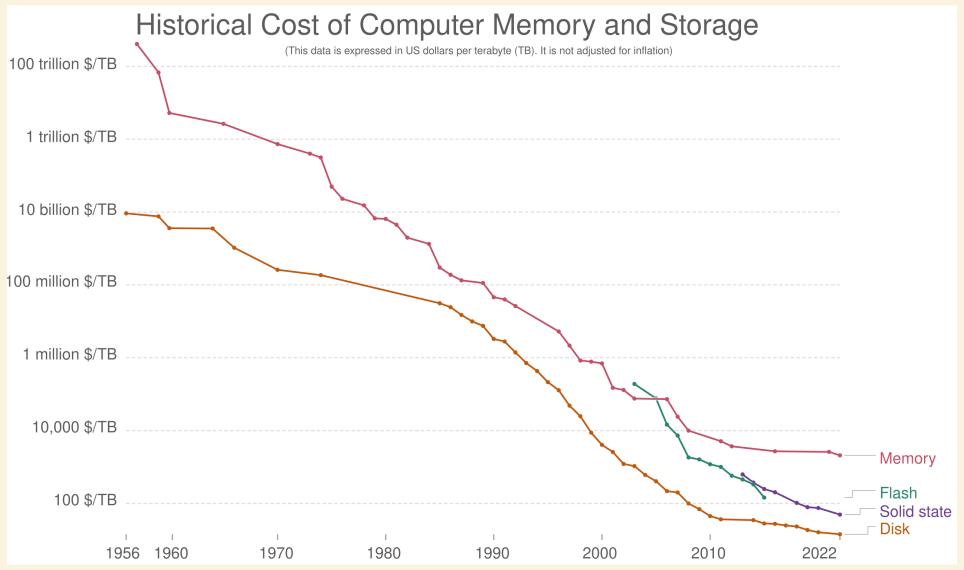
What Happend to 2-4 and 6-9?


What RAID levels described above are the most common leves used in enterprise scenarios. The levels in between are highly specialized and only make sense in very specific scenarios.

Estrutura do Disco

- Um disco pode ser subdividido em partições.
- Discos ou partições podem ser protegidos contra falhas através de RAID.
 - Partições: minidiscos ou fatias.
 - Disco ou partição pode ser utilizado no estado
 bruto sem um sistema de arquivos ou
 formatado com um sistema de arquivos.
- A entidade contendo o sistema de arquivos é conhecida como volume. Cada volume rastreia informações sobre esse sistema em um diretório do dispositivo ou uma tabela de volumes, indicando seu conteúdo.
- Fonte da imagem: diskinternals.com


Mapeamento de Endereços


- As unidades de disco rígido são endereçadas como grandes matrizes unidimensionais de blocos lógicos, onde o bloco lógico é a menor unidade de transferência.
- A formatação de baixo nível cria blocos lógicos no meio físico.
- Essa matriz unidimensional de blocos lógicos é mapeada sequencialmente para os setores do disco.
- Fonte da imagem: electronicspecifier

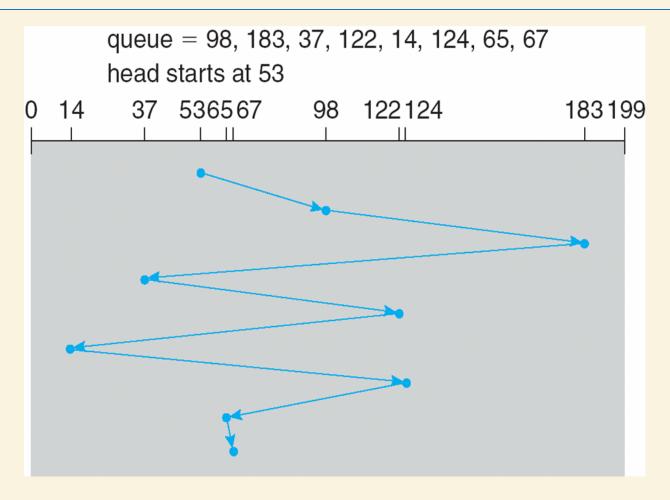
Mapeamento de Endereços

- O setor 0 corresponde ao primeiro setor da primeira trilha no cilindro mais externo.
- O mapeamento prossegue em ordem através dessa trilha, depois pelas demais trilhas nesse mesmo cilindro e, finalmente, pelos demais cilindros, do mais externo para o mais interno.
- A conversão de endereços lógicos para físicos deveria ser direta.
- Exceto pela presença de setores defeituosos.
- Devido à velocidade angular constante (CAV), o número de setores por trilha não é constante.
- Fonte da imagem: electronicspecifier

Fonte da imagem: History of hard disk drives @ Wikipedia

Escalonamento de Disco

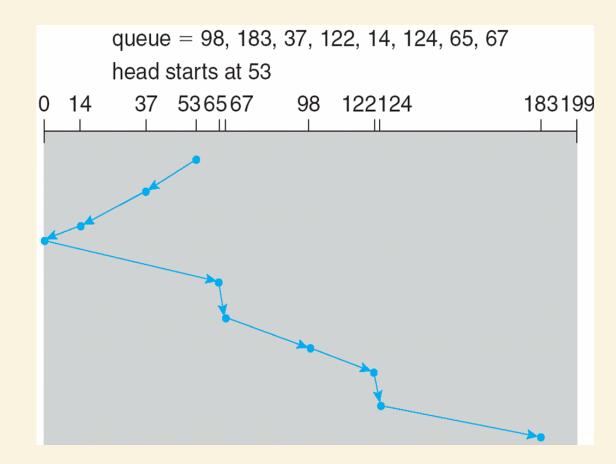
- O sistema operacional é responsável por utilizar o hardware de forma eficiente no caso das unidades de disco rígido, isso implica em minimizar o tempo de acesso e maximizar a largura de banda do disco.
- Minimizar o tempo de busca.
- Tempo de busca é aproximadamente proporcional à distância de busca.
- A largura de banda (bandwidth) do disco é definida como o número total de bytes transferidos dividido pelo tempo total entre o primeiro pedido de serviço e a conclusão da última transferência.


Escalonamento de Disco (cont.)

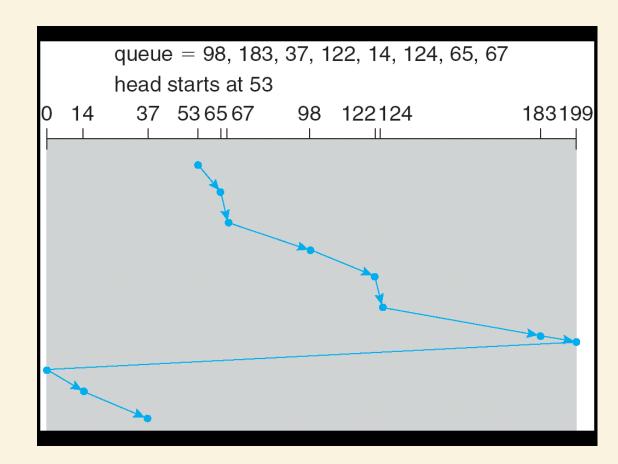
- Existem diversas fontes de requisições de E/S do disco:
 - Processos do sistema
 - Processos do usuário
- Uma requisição de E/S inclui o modo de entrada ou saída, endereço do disco, endereço da memória e número de setores a serem transferidos.
- O SO mantém uma fila de requisições, por disco ou dispositivo.
 - Um disco inativo pode trabalhar imediatamente em uma requisição de E/S; um disco ocupado significa que o trabalho deve ser enfileirado.
- Note que os controladores de disco possuem buffers pequenos e podem gerenciar uma fila de requisições de E/S (de "profundidade" variável).

Escalonamento de Disco (cont.)

- No passado, o sistema operacional era responsável pelo gerenciamento da fila e pelo agendamento dos cabeçotes do disco rígido. Atualmente, isso está integrado aos dispositivos de armazenamento, controladores.
 - Atualmente, integrado aos dispositivos de armazenamento, controladores.
 - Apenas fornecem endereços lógicos de bloco (LBAs) e lidam com a ordenação das requisições.
- Diversos algoritmos existem para agendar a execução das requisições de E/S do disco.


FCFS

Movimento total do cabeçote de 640 cilindros. Fonte: A. Silberschatz et. al, Operating Systems Concepts.


SCAN (algoritmo do elevador)

- O braço do disco inicia em uma extremidade do disco e move-se em direção à outra extremidade, atendendo às requisições até chegar ao final oposto, onde o movimento do cabeçote é invertido (repete a operação).
- As requisições forem densamente distribuídas uniformemente, a maior densidade estará na outra extremidade do disco e essas requisições aguardarão o tempo mais longo.
- Na figura: movimento total do cabeçote de 208 cilindros. Fonte: A. Silberschatz et. al, Operating Systems Concepts.

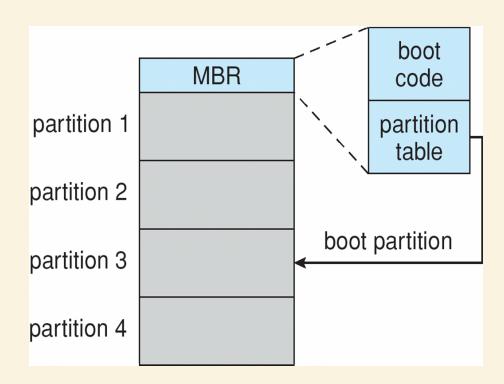
C-SCAN

- O cabeçote move-se de uma extremidade do disco à outra, atendendo às requisições durante o percurso.
- Ao atingir a outra extremidade, ele retorna imediatamente ao início do disco, sem atender nenhuma requisição na viagem de volta.
- Trata os cilindros como uma lista circular que se envolve do último cilindro para o primeiro.
- Fonte da imagem: A. Silberschatz et. al,
 Operating Systems Concepts.

Seleção de Algoritmo

- Como qualquer algoritmo de escalonamento, o desempenho depende muito da quantidade dos dados e dos tipos de solicitação
- SCAN e C-SCAN são menos prováveis de gerar problema de inanição, quando uma dada requisição nunca é atendida
- Métricas relevantes:
 - Tempo de busca (seek time): Tempo necessário para posicionar o cabeçote na trilha desejada
 - Tempo de latência rotacional (Latency time): Tempo necessário para atingir o início do setor a ser lido/escrito
 - Tempo para escrita/leitura efetiva dos dados

Gerenciamento de Dispositivos de Armazenamento


- Formatação de baixo nível (formatação física): Divide um disco em setores que o controlador do disco pode ler e escrever.
 - Setor pode conter informações de cabeçalho, dados e código de correção de erros (ECC).
 - Geralmente possui 512 bytes de dados, mas pode ser selecionável.
- Para utilizar um disco para armazenar arquivos, o sistema operacional ainda precisa registrar suas próprias estruturas de dados no disco.
 - Particiona o disco em um ou mais grupos de cilindros, cada um tratado como um disco lógico.
 - Formatação lógica, ou "criação de um sistema de arquivos".
 - Para aumentar a eficiência, a maioria dos sistemas de arquivos agrupa blocos em clusters.
 - Operações de E/S do disco são realizadas em blocos.
 - Operações de E/S de arquivo são realizadas em clusters.

Gerenciamento de Dispositivos de Armazenamento (cont.)

- A partição raiz contém o sistema operacional. Outras partições podem conter outros sistemas operacionais, outros sistemas de arquivos ou estar em estado bruto.
 - São montadas durante a inicialização do sistema.
 - Outras partições podem ser montadas automaticamente ou manualmente.
- Durante a montagem, a consistência do sistema de arquivos é verificada.
 - Verifica-se se todos os metadados estão corretos.
 - Se n\u00e3o estiverem, tenta-se corrigi-los e repetir o processo.
 - Caso contrário, adiciona-se à tabela de montagem e permite-se o acesso.
- O bloco de inicialização pode apontar para o volume de inicialização ou um conjunto de blocos que contenham código suficiente para saber como carregar o kernel a partir do sistema de arquivos.
 - Ou um programa de gerenciamento de boot para inicialização multi-OS.

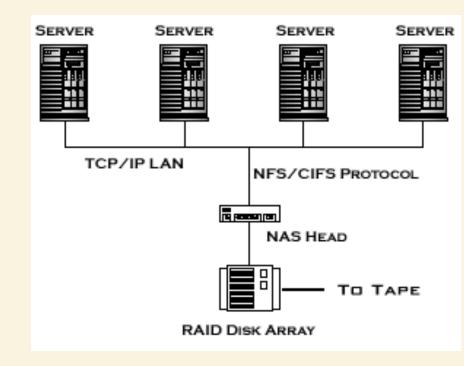
Bootloader

- Acesso direto ao disco bruto para aplicativos que desejam realizar seu próprio gerenciamento de blocos, evitando a intervenção do sistema operacional (por exemplo, bancos de dados).
- O bloco de inicialização inicializa o sistema.
 - O bootstrap é armazenado em ROM ou firmware.
 - O programa bootstrap loader é armazenado nos blocos de inicialização da partição de boot.
- Métodos como o sector sparing são utilizados para lidar com blocos defeituosos.
- Na imagem: Inicialização a partir de armazenamento secundário no Windows. Fonte: A. Silberschatz et. al, Operating Systems Concepts.

Anexação de Disco

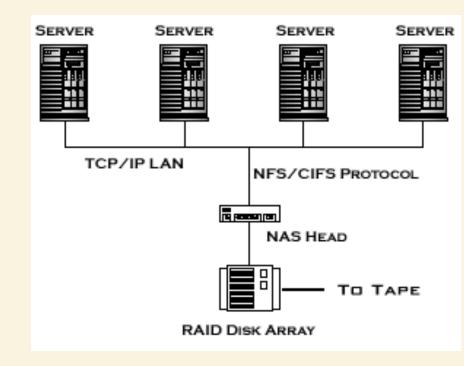
- Armazenamento anexado ao host acessado através de portas de E/S comunicando-se com barramentos de E/S.
- Diversos barramentos estão disponíveis, incluindo Ata Attachment Avançado (ATA), Serial ATA (SATA), eSATA, Serial Attached SCSI (SAS), Universal Serial Bus (USB) e Fibre Channel (FC). Mais comum: SATA.
- **NVM Express (NVMe)**: Nova interface rápida para NVM, conectando-se diretamente ao barramento PCI. Velocidade significativamente maior.

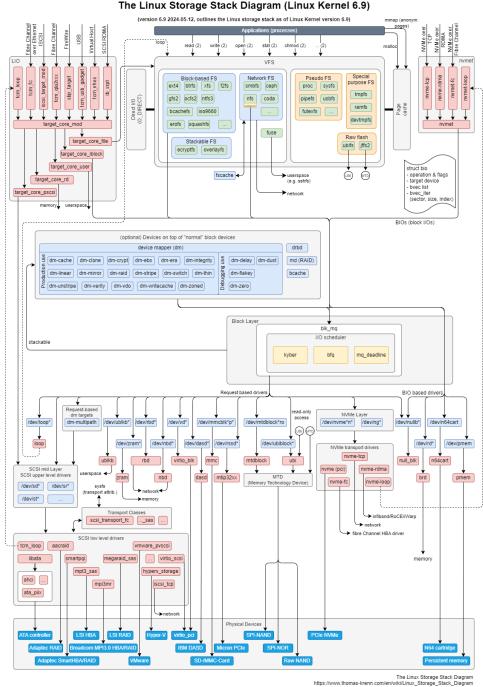
Anexação de Disco (cont.)


- As transferências de dados em um barramento são realizadas por processadores eletrônicos especializados chamados controladores (ou adaptadores host-barramento, HBAs).
 - Um controlador host está na extremidade do computador do barramento e um controlador de dispositivo está na extremidade do dispositivo.
 - O computador coloca um comando no controlador host, utilizando portas de E/S mapeadas na memória.
 - O controlador host envia mensagens para o controlador do dispositivo.
 - Os dados são transferidos via DMA entre o dispositivo e a DRAM do computador.

Anexação de Armazenamento

- Os computadores acessam o armazenamento de três maneiras:
 - Anexo ao host (local)
 - Anexo à rede
 - Nuvem (cloud)
- O acesso anexo ao host ocorre através de portas de E/S locais, utilizando uma das diversas tecnologias disponíveis.
- Para conectar muitos dispositivos, utilizam-se barramentos de armazenamento como USB,
 FireWire e Thunderbolt.
- Sistemas de alta performance utilizam Fibre Channel (FC).
 - Arquitetura serial de alta velocidade que utiliza cabos de fibra óptica ou cobre.


Armazenamento Anexo à Rede (NAS)


- Network-Attached Storage (NAS) é um armazenamento disponibilizado através de uma rede, em vez de por meio de uma conexão local (como um barramento).
 - Permite a anexação remota a sistemas de arquivos.
 - NFS e CIFS são protocolos comuns.
- Tipicamente implementado via chamadas de procedimento remoto (RPCs) entre o host e o armazenamento através de TCP ou UDP em uma rede IP.
- Fonte da imagem: Yitzhak Birk @ ResearchGate

Considerações na Seleção de NAS

- Capacidade de Armazenamento: Determine a quantidade de espaço de armazenamento necessária atualmente e no futuro.
- **Escalabilidade:** Procure dispositivos que suportem opções de expansão.
- Desempenho: Avalie velocidades de transferência de dados e suporte para configurações RAID.
 - Redundância de dados, snapshots para recuperação, backup

Linux Storage Stack Diagram

- Na imagem: A posição dos caminhos de dados NVMe e múltiplas filas internas dentro das diversas camadas da pilha de armazenamento do kernel Linux.
- Fonte: I/O Scheduling @ Wikipedia

36

Conclusão

- Considerações para Sistemas Operacionais:
 - Abstração do Hardware: Como o SO fornece uma interface consistente para diferentes tipos de dispositivos de armazenamento.
 - Gerenciamento de Espaço Livre: Alocação e desalocação eficiente de espaço em disco.
 - Particionamento: Dividir discos em partições lógicas para organizar dados e permitir múltiplos sistemas operacionais.
 - Interfaces de Discos: Visão geral das tecnologias de conexão (SATA, NVMe, USB, Fibre Channel) e suas características
- Gerenciamento de E/S e Desempenho:: Como o sistema operacional organiza as requisições para minimizar o tempo de acesso ao disco (abordagem teórica).

Conclusão (cont.)

- Conceitos Chave:
 - Latência: Tempo de resposta do dispositivo de armazenamento.
 - Throughput: Taxa de transferência de dados.
 - Redundância: Duplicação de dados para proteção contra falhas.
 - Escalabilidade: Capacidade de aumentar a capacidade de armazenamento conforme necessário.

Material Adicional

- Paying for Cloud Storage is Stupid YouTube
- How do hard drives work? YouTube
- What is LTO TAPE?/FUJIFILM VouTube
- Data Tiering in Heterogeneous Memory Systems

Dúvidas e Discussão